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Abstract 

A crystal model is proposed that is in good agreement 
with the experimental electron diffraction patterns and 
high-resolution electron-microscopy images of the icosa- 
hedral phase in Mn-A1 and related systems. Structurally, 
the model has long-range periodic translational order 
with a large unit cell (space group Im3) containing 
10 038 atoms as well as orientational order characterized 

_ _  

by symmetry close to the m35 point group. Such a 
periodic structure can explain the origin of the crys- 
tallographically forbidden icosahedral symmetries. The 
icosahedral phase may thus be considered as a complex 
cubic crystal. 

1. Introduction 

The first intermetallic phase with icosahedral symme- 
try was discovered by Shechtman, Blech, Gratias & 
Cahn (1984) in a rapidly solidified Al-14at.%Mn al- 
loy. This icosahedral phase exhibits diffraction spots as 
sharp as ordinary crystals but could not be indexed by 
any Bravais lattice (Shechtman et al., 1984). Because 
the 'fivefold' symmetry associated with the icosahedral 
phase contravened the basic tenets of crystallography, 
the term 'quasicrystal' was coined to classify a phase 
that has long-range orientational order but no peri- 
odic translational order (Levine & Steinhardt, 1986). 
Later, phases with the same symmetry were found in 
various binary or ternary alloys (Dong, Hei, Wang, 
Song, Wu & Kuo, 1986; Ma & Stern, 1987; Hiraga, 
Lee, Hirabayashi, Tsai, Inoue & Masumoto, 1989) and 
even other classically forbidden symmetries, such as 
eightfold, tenfold and twelvefold phases, have been 
reported (Bendersky, 1985; Ishimasa, Nissen & Fukano, 
1985; Wang, C h e n &  Kuo, 1987). Numerous models 
were developed to understand these unusual symmetries; 
for example, the icosahedral glass model (Shechtman & 
Blech, 1985), Penrose tiling models (Socolar & Stein- 
hardt, 1986; ttenley, 1986) and the random tiling model 
(Widom, Deng & Henley, 1989) and models using 
projections from six-dimensional space (Elser, 1985a,b). 
However, these models failed to explain all the ex- 
perimental observations; in particular, they could not 
immediately render the real atomic distribution in three- 

-t On leave from Materials Testing Center, Northeastern University, 
Shenyang, China. 

© 1997 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

dimensional physical space. Although models based on 
crystalline approximants were developed recently, the 
actual structures, however, were assumed to be aperiodic 
(Elser, 1985a,b; Poon, Dmowski, Egami, Shen & Shiflet, 
1987; Zhang, Stroud, Libbert & Kelton, 1994). 

Debates over the interpretation of diffraction data 
from the icosahedral phase, led by Linus Pauling (Paul- 
ing 1985, 1987, 1989), raised fundamental issues about 
the limits of our ability to distinguish between a true 
quasicrystal and a periodic crystal with complex large 
unit cells. Although Pauling suggested that a long- 
range, periodically and translationally ordered, twinned 
structure is responsible for the sharp Bragg reflections 
observed in the icosahedral phase, he did not present 
a convincing structural model. Motivated by Pauling's 
work, we investigated the icosahedral phase using ad- 
vanced transmission-electron-microscopy and computer- 
simulation techniques. We found that the experimentally 
observed diffraction patterns as well as high-resolution 
electron-microscopy (HREM) images of the icosahedral 
phase can be well explained by a crystal structure having 
a strict translational periodicity, being composed of 
many interpenetrating dodecahedrons and icosahedrons. 

2. Crystal model 

The unit cell of the crystal model we propose for 
Al-14 at.%Mn has a body-centered cubic (b.c.c.) struc- 
ture belonging to the Im3 space group with a cube edge 
of 5.4 nm. The structure can be described in terms of do- 
decahedrons and icosahedrons with three different length 
scales. The basis of the b.c.c, lattice is the large dodeca- 
hedron. One large dodecahedron surrounds the center 
of the unit cell and eight equivalent dodecahedrons 
surround the corner of the cube [2(a) Wyckoff positions]. 
At each of the 20 corners of the large dodecahedrons 
are located medium-sized icosahedrons, and at the cor- 
ners of the icosahedrons are the centers of the small 
dodecahedrons. All the dodecahedrons and icosahedrons 
have the same orientations. The unit cell we propose 
is built in such a manner and has a total of 10038 
atoms (1405 Mn and 8633 AI), which yield a crystal 
density of 3.27 g cm -3, being very close to the value of 
3.26 (6) g cm -3 measured experimentally (Chen, Chen, 
Inoue & Krause, 1985). The shortest atomic distance 
within the small dodecahedron is about 3.0/~, similar to 
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Table 1. Wyckoff position of the clusters in the proposed 
model for the icosahedral phase 

a = 5 . 4 n m ,  space group Im3 (no. 204), calculated density: 
3 .27gcm -3. 

Wyckoff 
position 

2(a) 
12(e) 
16(f) 
12(d) 
16(f) 
24(g) 
24(g) 
24(g) 
24(g) 

Wyckoff 
x y z position 

0 0 0 24(g) 
0.309 0 0.500 24(g) 
0.191 0.191 0.191 24(g) 
0.382 0 0 48(h) 
0.118 0.118 0.118 48(h) 
0 0.191 0.118 48(h) 
0 0.073 0.191 48(h) 
0 0.427 0.118 48(h) 
0 0.264 0.309 

x y z 

0 0.191 0.264 
0 0.382 0.382 
0 0.427 0.500 
0.309 0.309 0.073 
0.309 0.073 0.073 
0.118 0.382 0.427 
0.382 0.118 0.309 
0.382 0.073 0.191 

the diameters of the Mn and AI atoms. Fig. 1 shows the 
C001) projection of the unit cell, where the big circles 
represent the corner sites of the big dodecahedrons [ 12(e) 
and 16(f) Wyckoff positions], the small ones represent 
the corner sites of the medium icosahedrons [12(d), 
16(f), 24(g) and 48(h) Wyckoff positions] and only 
those dodecahedrons and icosahedrons projecting into 
the center of the unit cell are drawn. For simplicity 
and clarity, we did not include the small dodecahedrons. 
Thus, the unit cell shown in Fig. 1 can be considered 
as a cell where each position actually is occupied by 
the small dodecahedrons, or a 21-atom cluster (the 
individual column of atoms within the cluster in the 
major zone axes cannot be resolved by HREM). Such 
a unit cell consists of 478 clusters; Table 1 lists their 
Wyckoff positions. 

I-: 5.4 nm -I 
Fig. I. The (001) projection of the unit cell; only those dodecahedrons 

and icosahedrons projecting into the center of the cell are depicted. 
Either the big circle (at the comer positions of the big dodecahedron) 
or the small circle (at the comer positions of the medium icosahe- 
drons) represent a 21-atom cluster (or a small dodecahedron). There 
are 478 clusters and their Wyckoff positions are listed in Table I. 

3. Results and discussion 
We calculated the diffraction patterns and high- 
resolution images of our model and compared them 
with the experimental observations. Figs. 2(a)-(c) show, 
respectively, the selected-area diffraction (SAD) patterns 
of the so-called twofold, threefold and fivefold axes 
observed in rapidly quenched Al-14at.%Mn. Figs. 
2(d)-( f )  are the corresponding SAD patterns calculated 
using kinematical diffraction theory (sample thickness 
150 nm and incident electron energy 200 keV). The main 
features of these simulated patterns agree well with the 
experimental ones except for the intensity of a few 
reflections and the lack of several weak spots (both of 
which can be attributed to dynamical effects, including 
double diffractions). Since the simulation was based on 
a periodic structure, we can easily index all diffraction 
spots in terms of three Miller indices. Analysis of these 
indices suggests that each SAD pattern did not result 
from a single zone-axis diffraction but from several 
closely oriented zone axes. For example, the SAD 
pattern of Fig. 2 ( f )  was generated by the superposition 
of the [305], [508] and [8,0,13] . . . .  axes; the rotation 
angles from the [001] axis to each axis are 30.96, 32.01 
and 31.61 ° , respectively. All are very close to 31.71 ° , 
which is the angle between a twofold and a fivefold axis 

_ _  

in the m35 point group assigned for quasicrystals (Fig. 
3a). In a conventional electron diffraction experiment, 
if the [001] axis of the crystal is rotated 31.71 ° around 
the [010] axis, these three zone axes simultaneously 
satisfy the Bragg conditions and cannot be separated. 
Such superposition in the projected diffraction pattern, 
especially when the unit cell is large, can yield a pseudo- 
fivefold symmetry that is indisting_uishable from true 
fivefold symmetry (point group m35) in SAD. 

Similar pseudo-symmetries were found in Fig. 2(d) 
(twofold) and Fig. 2(e) (threefold), which were attributed 
to the reflections from (358), (15,25,39), (31,49,79), 
. . .  and (038), (0,5,13), (0,8,21) . . . .  zone axes, respec- 
tively. To describe the superposition of SAD patterns, we 
now use N-(uvw) to represent a zone family consisting 
of several nearly parallel zone axes, where (uvw) is the 
lowest-index zone in the family (e.g. for a family of 
(038), (0,5,13), (0,8,21) . . . . .  (uvw) = (038)). Thus, the 
SAD patterns shown in Figs. 2(d)- ( f )  can be defined as 
the N-(358), N-(038) and N-(305) axes, respectively. 
We also found that in m3 the SAD pattern of the C001) 
axis (Fig. 2g) is almost identical to that of the N-(358) 
axis (Fig. 2d), while the (111) (Fig. 2h) is almost 
identical to the N-(038) (Fig. 2e). The rotation angles 
between these pseudo-twofold, -threefold and -fivefold 
axes (Fig. 3b) are so close to those between the true 

_ _  

twofold, threefold, and fivefold ones in m35 (see Table 
2) that they could not be distinguished in SAD patterns. 
In m3, there are only six N-(hOl) axes and twelve 
N-(hkl) because this symmetry group does not have a 
fourfold rotation symmetry. Thus, we conclude that the 
six 'fivefold' axes reported for the icosahedral phase 
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(m35) are actually six N-(305) axes (pseudo-fivefold) 
in m3. The ten 'threefold' axes are six N-(038) (pseudo- 
threefold) and four (111) (true threefold) axes and the 
ffteen 'twofold' are twelve N-(538) (pseudo-twofold) 
and three (001) (true twofold) axes. Fig. 3 compares the 
true and pseudo-fivefold, -threefold, and -twofold axes in 
stereographic projection between the m35 and m3 point 
groups. 

The key issue is whether the icosahedral phase has a 
true fivefold axis that is forbidden in conventional crys- 
tallography. Using convergent-beam electron diffraction 

(CBED), we carefully examined many Mn-A1 samples 
in the zone axes that appear to be fivefold in SAD, 
but never observed any samples with a true fivefold 
symmetry. Fig. 2(i) shows the CBED pattern from the 
same zone axis as Fig. 2(c); although the position of the 
diffraction discs appears to be fivefold, the exact overall 
symmetry of their intensities is twofold nonetheless. 
The broken symmetry is most visible from the Kikuchi 
bands, which only exhibit a mirror symmetry in the 
(001) direction, consistent with our model. This obser- 
vation also is consistent with the CBED study by Tanaka 
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Fig. 2. (a)-(c) S A D  pattems observed in rapidly quenched A l - 1 4  at.%Mn alloy. (a) Pseudo-twofold,  (b) pseudo-threefold [tilted 20.9 ° from 
(a ) ] ,  a n d  (c)  pseudo-fivefold [tilted 31.7 ° from (a) ] .  ( d ) - ( h )  are the calculated diffraction patterns using the proposed model.  (d) The N - ( 3 5 8 )  

axis, (e) the N-(038)  axis, ( f )  the N-(305)  axis, (g) the (001) axis [identical to the N-(358)  axis (d)], and (h) the ( 1 1 1 )  axis [identical to 
the N-(038)  axis (e)]. The simulated patterns match well with the observed ones and all the diffraction spots were indexed with standard 
Miller indices. (i) Observed CBED pattern along the pseudo-fivefold axis from the same area of  (c). The Kikuchi bands show clearly that 
there is only one mirror symmetry. 
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& Terauchi (1985), who could not find any true fivefold 
axis in the alloy. Our study unambiguously showed that 
there is no true fivefold axis in the icosahedral phase, 
and the symmetries in SAD of the icosahedral phase 
can therefore be explained by a Bravais lattice. 

Another argument in favor of the quasicrystal concept 
is that the observed ratio of d spacing of two 'consecu- 
tive' reflections of the icosahedral phase appeared to be 
not rational [close to the golden ratio 7- = (1 + 51/2)/2 _~ 
1.618], e.g. the reflections in the (h00) systematic rows 
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Fig. 3. Stereographic projections of the symmetry elements of the 
icosahedral phase: (a) the m35 point group used in the literature 
for the icosahedral phase, and (b) the m3 point group from the 
present model. Only three (001) axes and four (111) axes show 
the same symmetry in (a) and (b). Note that the orientations of the 
(358), (038) and (305) axes in (b) are identical to those of the 
twofold, threefold and fivefoid axes in (a), respectively. 

in Figs. 2(e) and (f) .  Apparently, the irrational value 
gives the impression that the structure does not have 
strict translational periodicity. To understand the in- 
tensity distribution, we examined the structure factors 
for all reflections of the (h00) systematic row and 
found that they closely follow the extinction rule of 
the Im3 space group, i.e. no reflections are allowed 
when h -- 2n + 1. Although the strong reflections are 
10,0,0, 16,0,0, 26,0,0 . . . .  , other reflections (h -- 2n) 
exist but have much smaller structure factors. Similar 
characteristics were observed for the (358) systematic 
rows (i.e. strong intensity for 358, 5,8,13, 8,13,21, . . . )  
and were only found in the true and pseudo-twofold 
directions. Such intensity distribution is not unusual and 
can be easily attributed to the icosahedral clusters located 
inside the unit cells of the cubic crystal (Pauling, 1985). 

The sharpness of the diffraction spots in patterns 
of fivefold symmetry has puzzled the crystallographic 
community since the discovery of quasicrystals. Ac- 
cording to classical diffraction theory, the perfection 
or the translational periodicity of a sufficiently large 
crystal gives rise to sharp diffraction peaks, while the 
imperfections of a crystal, such as stacking faults and 
dislocations, cause peak broadening. In contradiction, 
Stephens & Goldman (1986) showed that clusters of 
atoms densely packed and complying with specific rules 
that enforce long-range icosahedral bond-orientational 
order also might generate sharp diffraction maxima. 
What is common between our approach and theirs is that 
both deal with clusters of fivefold symmetry. However, 
we have abandoned the assumption of aperiodicity, 
rather, we show that crystals obeying the symmetry 
rules of classical crystallography may result in intensity 
distribution of Bragg reflections in reciprocal space with 
approximately fivefold symmetry. 

Our structural model also agrees with the observations 
of HREM. In fact, for most of the published high-quality 
HREM images of the icosahedral phase and related 
systems (including AI-Mn-Si, AI-Cu-Fe, A1-Ru-Cu 
alloys), we have found unit cells with a periodicity 
of about 5 nm in these images (Hiraga, 1987, 1991; 
Hiraga et al., 1989; Hiraga, Zhang, Hirabayashi, Inoue 
& Masumoto, 1988; Kan, Robertson, Moss, Kukik, 
Ishimasa, Mori, Quivy, Gratias, Elser & Zschack, 1993), 
especially in the regions where few planar defects were 
present. The size of the unit cell is very close to that 
found in high-resolution X-ray diffraction and calculated 
using large-cell projection (Goldman & Kelton, 1993). 
Fig. 4 shows a HREM image recorded along the pseudo- 
fivefold axis of the A1-Cu-Fe alloy. The dot pattern 
is a potential map of the local crystal structure. The 
periodicity of the image along the [010] and the [503] 
directions (~5.0 and 6.9nm, respectively) is clearly 
visible (marked as two sets of parallel white lines in 
Fig. 4). The inset is the calculated unit-cell projection 
along the N-[305] zone axis (the Wyckoff positions of 
the unit cell are shown in Table 1), showing very good 
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Table 2. The rotation angles (°) between the true and pseudo-twofold, -threefold and -fivefold axes in m3-5 and m3 
point groups 

Owing to the equivalent operations, there are many equivalent rotations between these zone axes, so only the smallest angles are listed here. 

m35 twofold 
m3 {001} 
m3 N-(358) 

_ _  

m35 threefold 
m3 (111) 
m3 N-{308) 

_ _  

m35 fivefold 
m3 N-(305) 

m35 m3 m35 m3 m35 m3 
twofold N-(358) threefold N-(038) fivefold N-(305) 

36.0 20.92 31.71 
36.09 20.56 30.96 
36.28 20.93 31.91 

20.91 41.82 37.38 
21.07 41.99 37.62 
20.93 41.22 36.59 

31.71 37.38 63.43 
31.91 36.59 63.82 

agreement with the experimental  one. Here, each dot 
does not represent a single atom column but the projec- 
tion of a cluster that involves ten equally spaced nearest 
neighbors (spacing ,-~ 0.18 nm) from the projected small 
dodecahedron (the atom columns within the cluster are 
not resolved). The same calculated unit cell can also 
be matched to the H R E M  structural image of Si-doped 
Mn-A1 reported by Hiraga (1987). 

In discussing the detailed structure of the icosahedral 
phase, we have to bear in mind that the dodecahedron 
and the icosahedron have the same crystallographic sym- 
metry. Although the model we present here is based on 

interpenetrating dodecahedrons and icosahedrons (this 
was a process of trial and error: we choose all the 
dodecahedrons and icosahedrons to align in the same 
orientations and the ratio of their length scales close to 
-r), other models may also generate diffraction patterns 
and high-resolution images that match the experimental  
observations. One of the criteria in choosing a correct 
model may be related to the size of the unit cell 
and the total number  of the atoms it contains, i.e. the 
density of the material. Imperfect dodecahedrons and/or 
icosahedrons can be introduced in modeling because 
these may be produced by the rapid solidification process 

Fig. 4. HREM image along the pseudo-fivefold axis showing a potential map of the local structure in AI-Cu-Fe (defocus value -60 nm). 
Each white dot corresponds to the projection of one cluster. Inset is the N-(305) projection of the unit cell of the proposed model; it is in 
agreement with the experimental image. The periodic translational order in [010] and [503] directions is marked by the parallel white lines. 
Note that there is a planar defect that yields a lattice displacement in the area. 
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under which the alloys were formed. Little difference 
would be noted in both calculated zone-axis diffraction 
patterns and projected high-resolution images if clusters 
or atoms at certain Wyckoff positions were removed. 

4. Conclusions 

Using simulations of electron diffraction and high- 
resolution structural images, we have demonstrated 
that the quasicrystal of the icosahedral phase can be 
described as a complex b.c.c, crystal. The crystal has 
a large unit cell containing more than 10 000 atoms. It 
does not have true fivefold symmetry, although its SAD 
pattern has fivefold appearance. Such pseudo-symmetry 
originates from the superposition of reflections from 
several nearly parallel zone axes. Since the icosahedral 
phase is modeled as a crystal with periodic translational 
order, the sharpness and the symmetry of its diffraction 
peaks can be explained in the framework of classical 
diffraction theory. 
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by the US Department of Energy, Division of Materials 
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